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p Institute of Theoretical Physics, Academia Sinica, PO Box273.5. Beijing 100080, 
People's Republic of China 
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Abstract. A model Hamiltonian for a charged particle in a uniform electric field with 
alternating intersite interactions is studied in detail. For the case of weakly alternating 
intersite interactions, general solutions are obtained for the energy spectrum and the 
eigenvectors by using the perturbation theory developed in OUT previous papers, by which it 
is shown quite rigorously that the energy specttum is that of two interspaced Stark ladders. 

1. Introduction 

In a one-dimensional lattice, the Hamiltonian for a charged particle hopping on an 
infinite linear chain under the action of a uniform electric field in the direction of the 
chain and with the approximation of the nearest-neighbour intersite overlap integrals 
can be generally written as 

H = ~ V m ( I m ) ( m + l I + I m + l ) ( m I )  -'&Z:ImXmI (1.1) 
m m 

where Im) represents a Wannier state localized on lattice site m, V,  is the nearest- 
neighbour intersite overlap integral between sites m and m + 1, and '& = eE& where e, 
E, and a,  respectively, are the charge on the particle, the external electric field and the 
lattice spacing. Here, V,  has been assumed to be real for simplicity, and the off-diagonal 
elements of the position operator in the Wannier basis have been neglected. In general, 
according to a practical crystal, the transfer energy V ,  is a function of site m, which, 
however, often makes it impossible to seek exact solutions for the purpose of analytic 
discussions. Therefore, in order to obtain exact solutions, research workers usually pay 
attention to prefect crystals where V,  can be treated as a constant, and the problem can 
be exactly solved [ 1-31, Recently, Kovanis and Kenkre [4] have studied a model in which 
the transfer energy V, alternates between the values VI and V,. In the absence of an 
electric field, they obtained the exact probability self-propagators. In the present work, 
following the Kovanis-Kenkre model, we investigate the case when a uniform electric 
field is present. 

If we write the difference VI - V ,  (assuming V ,  > V ,  > 0) as 2A and the average 
(VI + V2)/2 as V, the Hamiltonian (1.1) becomes 
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H =  2 [V + A(-l)m](lmXm + 1 I + Im + l)(mI) - '& mlm)(ml= Ho + H ,  
(1 4 
(1.3) 

nt m 

Ho = x [ V +  A(-l)m](lm)(m + 11 + Im + l)(ml) 

H . = - % E m l m ) ( m l  . .  (1.4) 

m 

m 

where Ho is the field-free Hamiltonian. Such a system is relevant to a variety of fields 
including electron stat= insuperlattices [5,6], and the localized properties of excitations 
in ferroelectric materials [7-91. 

We note that &ally, in practical crystals, (VI - Vz)/(Vl + Vz) Q 1, i:e. A / V g  1. 
Infact, weoftenencounterthis.Therefore,inthefollowing, westudy only thissituation. 
We find that in this case the problem can be exactly solved by using the perturbation 
theory (m) developed in our previous papers [lo-121. To do this, we first focus on 
seeking the explicit solutions for the field-free system in k-space (section 2). Then, by 
expressing the eigenvectors in (1.2) as a linear superposition of the field-free eigen- 
vectors, the exact results are obtained for the energy spectrum and the eigenvectors by 
using PT (section 3). Finally, the concluding remarks are given in section 4. 

2. Explicit solutions for Hp in k-space 

Following our previous paper [lo], we express the eigenvector lq) of Ho as a linear 
superposition of Wannier states Im): 

I q) = E c m  Im). (2.1) 

E o C h  = ( V +  A)Ch+s +(V-A)C%-i (2.2) 
~ o C h + l ' = ( V +  A)C% +(V-A)C%+z (2.3) 

Ch =f(k)exp(ikm) Ctn+ I = g ( k )  exp(ikm) O s k s k  (2.4) 

E&) - 2g(k) exp(-ik/Z)[Vcos(k/2) + iA sin(k/2)] = 0 (2.5) 
Egg@) - 2 f (k )  exp(ik/2)[V cos(k/2) - iA sin(k/2)] = 0. (2.6) 

m 

Here the amplitudes C,  satisfy 

where is the energy belonging to Ho. These equations can be diagonalized by setting 
! 

where k is the (dimensionless) wavevector. We get 

The eigenvalue equation determined by equations (2.5) and (2.6) is 

E ;  - 4{[Vco~(k/2)]~ + [A ~in(k/2)]~} =I) 

E : @ )  = +2{[Vco~(k/2)]~ + [A ~in(k/2)]~}~'2. 
with solutions 

Thus, the eigenvectors of H,, become 

g&) can be determined by the normalization of the eigenvectors 1 q ( k ) ) + ,  which leads 
to' 
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g, (k )  = l / f i .  (2.11) 

If*(k)I* + lg+(k)t* = 1 fT(k)f?(k) +gZ(k)g,(k) = o  (2.12) 

From (2.8)-(2.11), it is easily shown that the following formulae are true: 

* ( d k ) l q ( k ’ ) ) *  = w - k’) *(qwQw)): = 0. (2.13) 

3. General solutions to H for the case AlV 4 1 

Setting the eigenvector I v#)  of H to be of the form 

I V ) =  l a & [ a ( k ) l d W t  + b(k)ldk))-l  (3.1) 
0 

and using (1.2)-(1.4), we obtain the following equation for the amplitudes a(k) and 
b(k): 

2 

dk [@(k)lN4)t + b(k)ldkN-I =I dk [ d ( k ) ~ ( k ) l d k ) ) t  
E fob 0 

+ ~ i ( k ) b ( k ) l d k ) ) - l  -%IZldk ( a ( k ) x m l m ) ( m l d k ) ) +  m 

0 

+ W )  xmlm)(mlm(k))-) m (3.2) 

+ W’) ~mt(m(k) lmXml~(k’ ) ) - ) .  m (3.3) 

where E is the energy belonging to H. By multiplying both sides of equation (3.2) by 
t ( ~ ( k ) l ,  and using (2.13) we have 

4 4  = ~ : a ( k )  - %r d k ’ ( o ( k ’ ) ~ m + ( ~ ( k ) I m X m I ~ ( k ‘ ) ) +  

Substituting (2.9) into (3.3), we find (as shown in [lo]) that 

with 
(d/dk)a(k) = i{[€ + % + €i(k)]/2% + h(k)}a(k) - ih(k)b(k) (3.4) 

h(k) = - V A / [ & i ( k ) ] * .  (3.5) 

(d/dk)b(k) = i{[& + % - &i(k)J/2% + h(k)}b(k) - ih(k)a(k). ( 3 4  

(3.7) 

Similarly, by multiplying both sides of equation (3.2) by -(q(k)l ,  we get 

By setting 

where 
= expIiI4k) + P(k)l}A(k) b(k) = exp{i[W - PWJ} B(k) 

€ + %  k + ( dk’ h(k’) P(k) = 1 k  dk‘ E ;  (k‘) (3.8) 44 = 
0 

equations (3.4) and (3.6) reduce to 

(d/dk)A(k) = -ih(k) exp[-2iP(k)] B(k)  
(d/dk)B(k) = -ih(k) exp[2iP(k)] A(k) .  

Equations (3.9) and (3.10) can be rewritten as 

(3.9) 
(3.10) 
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where ux and U) (as well as uz used below) are the Pauli matrices. By introducing 

(3.12) 

G(k) = X(k)u,  + Y(k)u, (3.13) 
W k )  = h(k) COS[z3(k)l Y(k) = h(k) sin[2/3(k)] (3.14) 

(d/dk)R(k) = -iG(k)R(k) (3.15) 
equation (3.11) reduces to 

or equivalently 
k 

R(k) = R(0) - i Io dkl G(k, )R(k , ) .  (3.16) 

From (3.13) and (3.14), using the well known properties of the Pauli matrices, we find 
that 

IG(k)l = Ih(k)l. (3.17) 
Substituting (2.8) and (3.5) into (3.17), weget 

(3.18) 
As indicated in section 1, what we are interested in is the case when A/V< 1. From 
(3.18), this gives 

IG(k)l= [1/2{1+ (A/V)2 + [l - (A/v)'] COS k} l (A/V) .  

(3.19) 

Therefore, equation (3.16) can be solved using the FT. As the results, we obtain 

x W,-l - k,)G(kl)G(kd.. . G(km) 
1 k > O  

B ( k ) = ( O  k<O' 

It is easily shown that (the,calculation method is presented in [lO-12]) 
G(k, )G(k , ) .  . . G(k,) = 

X(klk2. . . k, )  + iY(klk2. . , km)u, 

(X(klk2 . . . k,)u, + Y ( k 2 k 2 . .  . k,,,)u7 

i€m=21 

ifm = 21+ 1 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Y(klk2.  . . k,) = X(k1kz.  . . k,_ l )Y(km)  - Y(klk2 .  . . k,-i)X(k,) (m 2 2). 
(3.26) 

Defining 

(3.27) 

(3.28) 

(3.30) 

(3.31) 

From (3.7), (3.8), (3.12) and (3.20), we have 

(3.33) 

(3.34) 

Note that, from (2.8)-(2.11), &:(k + 2n) = E:(&) ,  f,(k + Zn) =f , (k) ,  g , (k+Zn)  = 
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g&), and Iq(k + h)), = Iq(k))+. Thus, we have a(0) =a(%) and b(0) = b ( h )  
because a(k) = +(q(k) I W )  and b(k) = -(q(k) I W ) .  This leads to the following equation: 

The eigenvalue equation determined by equation (3.35) is 

with solutions 

E; = (zn - h)% f (%/n)@(k, 0) (n integer) (3.37) 

where 

(3.38) 

Corresponding to E : ,  the solutionsfor a,(O) and b+(O) determined by both equation 
(3.35) and the normalization of the eigenvectors I q)* are 

where 

n + k% dk h(k). 
&E + %  

a* (Zn) = - 
% 

From (3.1), (3.33) and (3.34), we obtain the finalresults for the eigenvectors 

IY)? = 1 dk [a=(k)Ipl(k))+ + b.(k)lcp(k))-l 
7.z 

n 

with 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

where 
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cu,(k) = - ‘‘ + ’ k + Iok dk’ h(k‘). 
2% (3.44) 

It is straightforward to check the orthogonality conditions, i.e. 
*(VlqJ)* = 1 *(VIV)T =o. (3.45) 

4. Concluding remarks 

It is clearly seen from (3.37) that the energy spectrum for our model (1.2) is that of two 
interspaced Stark ladders, which is consistent with our previous results [lO-121 on the 
existence of WannierStark localization in solids for the case of a charged particle under 
the influence of a uniform electric field. 

In principle, our results (3.37)-(3.45) can exactly hold for the case A/V* 1. 
However, this means that one needs to use infinite integrals which, obviously, is impos- 
sible. Therefore, in practice, we have to make some approximations up to the required 
orders. For example, as the zero order of m, we get from (3.31) and (3.38) that 

This leads to 

where 

(4.3) 

Substituting (2.8) into (4.3) and completing this integral yields 

where E(@, y)  is the complete elliptic integral of the second kind [13], and y $the 
modulus defmed by 

B ( W  = -4(V/%)&7/2, Y) (4.4) 

y2 = 1 - (A/V)’. (4.5) 
Substituting (4.2) and (4.4) into (3.37), we obtain the spectrum 

E: = (2n - 4)’ f (4V/~)E(n/2, U). 
If we use the identity [14] 

where Fand r, respectively, are the hypergeometric function and the gamma function, 
the role of alternating intersite interactions in the spectrum can be explicitly found from 
(4.5)-(4.7), for which it should be noted that the enhancement of alternating intersite 
interactions(withoutdestroyingthemrequirement A/V 1)willgiverise toanincrease 
in the energy gap. 

Another characteristic of our general results (3.37)-(3.45) is that, compared with 
Movaghar’s [15] results where the Stark regime in semiconductor superlattice structures 
will appear for larger values of the external field Eo, our conclusion about the existence 



4428 Xian-Geng Zhao 

of WaMier-Stark localkation applies to quite a large range of the values of a (1-100 A) 
and Eo (0-108 V m-I), because there is no special wnlinement to these parameters in 
our model. In fact, the typical values above are in agreement with many experimental 
results [16-22]. 

Finally, we should like to indicate that, since. the eigenvectors for our model have 
been obtained in this paper, it is possible to calculate other physical quantities up to any 
order approximation. 
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