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Abstract. A model Hamiltonian for a charged particle in a uniform electric field with
alternating intersite interactions is studied in detail. For the case of weakly alternating
intersite interactions, general solutions are obtained for the energy spectrum and the
eigenvectors by using the perturbation theory developed in our previous papers, by which it
is shown quite rigorously that the energy spectrum is that of two interspaced Stark ladders.

1. Introduction

In a one-dimensional lattice, the Hamiltonian for a charged particle hopping on an
infinite linear chain under the action of a uniform electric field in the direction of the
chain and with the approximation of the nearest-neighbour intersite overlap integrals
can be generally written as

H=2V,(Imfm + 1] + |m + 1¥m|) — € 2 m|mXm (1.1)

where |m) represents a Wannier state localized on lattice site m, V,, is the nearest-
neighbour intersite overlap integral betweensitesmandm + 1, and € = eEga, wheree,
Eyand a, respectively, are the charge on the particle, the external electric field and the
lattice spacing. Here, V,, has been assumed to be real for simplicity, and the off-diagonal
elements of the position operator in the Wannier basis have been neglected. In general,
according to a practical crystal, the transfer energy V,, is a function of site m, which,
however, often makes it impossible to seek exact sclutions for the purpose of analytic
discussions. Therefore, in order to obtain exact solutions, research workers usually pay
attention to prefect crystals where V), can be treated as a constant, and the problem can
be exactly solved [1-3]. Recently, Kovanis and Kenkre [4] have studied a modelin which
the transfer energy V,, alternates between the values V, and V,. In the absence of an
electric field, they obtained the exact probability self-propagators. In the present work,
following the Kovanis—Kenkre model, we investigate the case when a uniform electric
field is present.

If we write the difference V; — V, (assuming V, > V, > 0} as 2A and the average
(V, + V,)/2 as V, the Hamiltonian (1.1) becomes
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H=2[V+ A(=1)")(lm)em + 1| + |m + 1)m|) — € 2 m|m)m| = H, + H,

(1.2)
Hy= 2 [V + A(-1)"}(Im)m + 1] + |m + 1)m|) (1.3)
H, = ~€ 2 m|m)m| o (1.4)

where Hj is the field-free Hamiltonian. Such a system is relevant to a v}ariety of fields
including electron states in superlattices [5, 6], and the localized properties of excitations
in ferroelectric materials [7-9].

We note that usually, in practical crystals, (V, - V)/(Vi+ Vo) <1, ie. A/V <],
Infact, we often encounter this. Therefore, in the following, we study only this situation.
We ﬁnd that in this case the problem can be exactly solved by using the perturbation
theory (PT) developed in our previous papers [10—12] To do this, we first focus on
seeking the explicit solutions for the field-free system in k-space (sectzon 2). Then, by
expressing the eigenvectors in (1.2) as a linear superposition of the ﬁ¢]d-free eigen-
vectors, the exact results are obtained for the energy spectrum and the eigenvectors by
using PT (section 3). Finally, the concluding remarks are given in section 4.

2. Explicit sofutions for Hy in k-space

Following our previous paper [10], we express. the eigenvector |p) of H; as a linear
superposition of Wannier states |m):

lp) = %lem)- @.1)
Here the amplitudes C,, satisfy

£9Com = (V + A)Copyy + (V — A)Cppy (2.2)

€0Cam+1, = (V + A)Cop + (V= A)Coms (2.3)
where £, is the energy belonging to H,,. These equations can be diagonal‘izcd by setting
Co = f (k) explikm) Comsr = g(K) exp(ikm) O<k<2w (2.4)
where £ is the (dimensionless) wavevector. We get

eof (k) — 2g(k) exp(—ik/2)[V cos(k/2) + iA sin(k/2)] = 0 (2.5)

£08(k) — 2f (k) exp(ik/2)[V cos(k/2) — iA sin(k/2)] = 0. (2.6)
The eigenvalue equation determined by equations (2.5) and (2.6) is

— 4{[V cos(k/2)]* + [Asin(k/2)]%} =0 2.7

with solutions

g5 (k) = =2{[V cos(k/2)]? + [A sin(k/2)]2}2. (2.8)
Thus, the eigenvectors of Hy become ,

lgk). = 2 exp(ikm) {f. (k)|2m) + gx(k)llm + 1)} (2.9)
with the relation
f2(k) = {21V cos(k/2) +iA sin(k/2)]/s5 (K} exp(=ik/2) g.» (). (2.10)

£:(k) can be determined by the normalization of the eigenvectors | (k)}., which leads
to
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g+ (k)= 1/\/5
From (2.8)—(2.11), it is easily shown that the following formulae are true:
CfeOP +lgtE =1 Frf=(k) +gi(kg=(k) =0
+{@(k) |(p(k’)): =o(k— k') L)k} =0.

3. General solutions to H for the case A/V <1

Setting the eigenvector | y) of H to be of the form
2T
vy = [ dk[a) @, + BUO | (AY)-
0
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(2.11)

(212

(2.13)

(3.1)

and using (1.2)-(1.4), we obtain the following equation for the amplitudes a{k) and

b(k):
e[ ak [ lo ), +bOIP0N-1= [ dk [e5 (90| 9.
0 0

+ e (060 9k -1-8 [k (ak) = mimm] o 8,
0 m
+ 59 S mlm)ml 9(4)- )

(3.2)

where ¢ is the energy belonging to /. By multiplying both sides of equation (3.2) by

+{@(k)|, and using (2.13) we have
2” .
cak) = e§a®) =8 [ * ok (a6 S Olmtml o).
0 m

+b0k) S m (9 ) meml 9K ).

Substituting (2.9) into (3.3), we find (as shown in [10]) that
(d/dk)a(k) = if[e + € + &5 (k)]/28 + h(k)}a(k) — ih(k)b(k)
with
h(k) = —VA/[5 ()]
Similarly, by multiplying both sides of equation (3.2) by _{@(k)|, we get
(d/dk)b(k) = i{[e + € — 5 (k)]/2% + h(k)}b(k) — ih(k)a(k).
By setting
a(k) = explifa(k) + B(k)]} A(k) b(k) = explila(k) - B(K)]} B(k)
where

0= [ e K==k ez (&
o) =k [ k) pw=gg[ e esae)

equations (3.4) and (3.6) reduce to
(d/dk)A(k) = —ih(k) exp[—2ip(k)] B(k)
(d/dk)B(k) = —ih(k} exp[2iB(k)] A(k).
Equations (3.9) and (3.10) can be rewritten as

(3.3)

(3.4)

(3.5)
(3.6)

(3.7)

(3.8)

(3.9)
(3.10)
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i(A(k)) = —ih(k)o, cos[2f(k)] + o, sin[2B(k)]}(A(k)) (3.11)

dk\B(k) B(k)
where o, and g, (as well as 0, used below) are the Pauli matrices. By introducing
_(A®
R(k) = (B(k)) | (3.12)
G(k) = X(k)o, + Y(k)o, (3.13)
X(k) = h(k) cos[26(k)] Y(k} = h(k) sin[28(k)] (3.14)
equation (3.11) reduces to
(d/dk)R(K) = —iG(K)R(K) (3.15)
or equivalently '
R{k) = R(0) — ir dk, G(k)R(k,). (3.16)
0

From (3.13) and (3.14), using the well known properties of the Pauli matrices, we find
that

|G k)| = 1h(k)]. (3.17)
Substituting (2.8) and (3.5) into (3.17), we get
|G(k)| = [1/2f1 + (A/V)? + [1 — (A/V)?*] cos k}ll(-'-’\/ V). (3.18)

As indicated in section 1, what we are interested in is the case when A/V < 1. From
(3.18), this gives

.
[ dh GeeRG) | <IRO) (3.19)
0
Therefore, equation (3.16) can be solved using the PT. As the results, we obtain
R(k)= 2 UgnR(0) | (3.20)
m=0
where
Uy =1 : ' ' (3.21)

U((;cn)u) l)m(IHl dkl)e(kl —ky)0(k; — k3) . .

X Ok, = k)Glk1)G(Ks) . . . Glkm) (3.22)
1 k>0
o(k) = {0 o (3.23)

It is easily shown that (the calculation method is presented in {10-12])
Gk)G(ks) . . . Glky) =
{X(k1k2 - km) + iY(kaz - km)oz fm=2I

. (3.24)
X(klk:z . km)CfI + Y(k2k2 . km)O'y ifm=2I+1
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Xk o) = Xk - ke )X() + Vi .. 1)Vl
Y(klkz [ km) = X(klkz [ km-—l)Y(km) - Y(k]_kz PN km-"l)X(km)

Defining

(2"!)

2m
UG = (- 1)’”(11 "k, )0k, ~ k)0~ Ks)
X B(kom—y — kom)X(krks - . . ko)
sy = -ve(IT "ty )tk ~ ks = K.

X Ok oy — k)Y (hiky . . Kom)

2m+ 1

k
vEsl = (- 1),,.“(!1-[1 f dk,)e(kl—kz)e(kz—h)...
=1 Jp

X Okam — kame DX (k1Ko . o« Kaperr)

- 2m+1

k
ugrs” = o (I [ dka)oce, - k0, —ks) ..
0

I=1

X Okom — kogma1}Y(K1ka . . . Komyn)

() (0)
Ux(k D) R =1 U w0} T 0
we find that

From (3.7), (3.8), (3.12) and (3.20), we have

a(k)y _ explif(k)] 0 S
(b(k)) expli (k)]( expl=i ﬁ(k)]) EOU{,“’O)R(O)

7= (30)~ (o)

E E?)U) 2 Ux(kO) +10' 2 U(,,D)+10x 2 Uﬁ:;)l}'l'la 2 U(
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' (m=2)

(3.25)

(m=2).
(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)

2m+1)

(3.32)

(3.33)

(3.34)

Note that, from (2.8)—(2.11}, 5 (k + 27) = 5 (k), f-(k + 27) = fu(k), g(k+27) =
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g:(k), and |@(k + 27)). = |@(k)}.. Thus, we have a(0) = a(27) and b(0) = b(2x)
because a(k) = {p(k)|y)and b(k) = _{@(k)|y). This leads to the following equation:

ay explif(2m)] 0 a(0)
(b((})) B exp['“(m](o expl- 1;3(2::)]) ,,?-.: Utio (b(O)) (3-35)
The eigenvalue equation determined by equation (3.35) is
explif2m)] 0 : ) )
with solutions
ex =(2n - H¥ = (8/x)¢p(2x, 0) {(n integer) (3.37)

where

$(2m,0) = cos’l(cos[ﬁ(z:r)] 2 Ugr) o — sin[B(2x)) E U},%’;_‘Q u)) (3.38)

Corresponding to £ , the solutions for a.(0) and b.(0) determined by both equation
(3.35) and the normalization of the eigenvectors |}, are

0.0 =zl [(S v + (3 vim) ]/ (1 - ot o + 2

12
X U@ o) + sin[a. (27) + B(27)) E U},(z,, O,)} (3.39)

z U((z:r of +1i 2 U(&+¢ﬁ))][exp{‘i[wa(2ﬂ) + B2m)}

m={)
- (2 U,(,%ﬂ)a‘o) +1i 20 U;z(’zr;, ):Im(O) (340)
=0 m=
where
& (27) = f dk h(k). (3.41)

From (3.1), (3.33) and (3.34), we obtain the final results for the eigenvectors

)2 = [k la. (019D +b.00l0w)_] 6.4)
0 - )
with
4 (k) expliB()] 0 S
(bi(k)) ol *(k)]( exp[—iﬁ'(k)]) Eouf""”(b:(m) G4

where
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- + €
(k)= k+ J’ dk’ (k') (3.48)
It is straightforward to check the orthogonality conditions, i.e.
:(WTP): =1 =("ﬂ'|w>¢ =0. (3-45)
4, Concluding remarks

It is clearly seen from (3.37) that the energy spectrum for our model (1.2) is that of two
interspaced Stark ladders, which is consistent with our previous results {10-12] on the
existence of Wannier—Stark localization in solids for the case of a charged particle under
the influence of a uniform electric field.

In principle, our results (3.37)(3.45) can exactly hold for the case A/V <1.
However, this means that one needs to use infinite integrals which, obviously, is impos-
sible. Therefore, in practice, we have tc make some approximations up to the required
orders. For example, as the zero order of pT, we get from (3.31) and (3.38) that

®x w

mz_'u U gy =UBrg =1 mE—:o Uiglo) = Ulpeg =0. (4.1)
This leads to
$(2x, 0) = B(27) (4.2) -
where
1 (2=
B(2x) = 7 J; dk £5 (k). (4.3)

Substituting (2.8) into (4.3) and completing this integral yields

BQ2m) = —HV/€)E(w/2,7) (4.4)
where E(%/2, y) is the complete elliptic integral of the second kind [13], and y is the
modulus defined by

yi=1-(A/VY. (4.5)
Substituting (4.2) and (4.4) into (3.37), we obtain the spectrum
er = (2n — % = (4V/m)E(x/2, 7). (4.6)

If we use the identity {14]

z \_=® _a T T(m — HI(m +3) y>
E(i’) FFbELY T 2T(- i)r(g),;‘(, Tm+1) m

where Fand T, respectively, are the hypergeometric function and the gamma function,
the role of alternating intersite interactions in the spectrum can be explicitly found from
(4.5)-(4.7), for which it should be noted that the enhancement of alternating intersite
interactions (without destroying the pTrequirement A/V < 1) will give rise to anincrease
in the energy gap.

Another characteristic of our general results (3.37)-(3.45) is that, compared with
Movaghar’s [15] results where the Stark regime in semiconductor superlattice structures
will appear for larger values of the external field E,, our conclusion about the existence

4.7
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of Wannier-Stark localization applies to quite a large range of the values of 2 (1-100 A)
and Ey (0~10° V m™1}, because there is no special confinement to these parameters in
our model. In fact, the typical values above are in agreement with many experimental
results [16-22]. '

Finally, we should like to indicate that, since the eigenvectors for our model have
been obtained in this paper, it is possible to calculate other physical quantities up to any
order approximation.
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